This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247239 #46 Apr 04 2023 15:23:46 %S A247239 1,2,1,3,4,1,4,10,8,1,5,20,36,16,1,6,35,120,136,32,1,7,56,329,800,528, %T A247239 64,1,8,84,784,3611,5600,2080,128,1,9,120,1680,13328,42065,40000,8256, %U A247239 256,1,10,165,3312,42048,241472,499955,288000,32896,512,1 %N A247239 Array a(n,m) = ((n+2)/2)^m*Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, read by ascending antidiagonals. %C A247239 Unexpectedly, it is conjectured (proof wanted) that the expression ((n+2)/2)^m * Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, always gives an integer. %C A247239 For example, a(3,1) = (5/2)*(1/sin(Pi/5)^2 + 1/sin((2*Pi)/5)^2 + 1/sin((3*Pi)/5)^2 + 1/sin((4*Pi)/5)^2) = (5/2)*(2/(5/8 - sqrt(5)/8) + 2/(5/8 + sqrt(5)/8)), which simplifies to 20. %H A247239 I. M. Gessel, <a href="https://doi.org/10.37236/1326">Generating functions and generalized Dedekind sums</a>, Electron. J. Combin.4 (1997), no. 2, Research Paper 11, 17 pp. %H A247239 Les Mathematiques, <a href="http://www.les-mathematiques.net/phorum/read.php?3,1024481">Somme des 1/sin^2</a>, Sketch of a proof [in French]. %H A247239 MilesB, <a href="https://mathoverflow.net/questions/444094/how-to-prove-this-sum-involving-powers-of-cosec-is-an-integer">How to prove this sum involving powers of cosec is an integer?</a>, MathOverflow 444094. %H A247239 R. P. Stanley, <a href="https://doi.org/10.1090/S0273-0979-1979-14597-X">Invariants of finite groups and their applications to combinatorics</a>, Bull. Amer. Math. Soc. 1 (1979), 475-511. %F A247239 First formulas for rows: %F A247239 a(0,m) = 1. %F A247239 a(1,m) = 2^(m + 1). %F A247239 a(2,m) = 2^m + 2^(2*m + 1). %F A247239 a(3,m) = 2*((5 - sqrt(5))^m + (5 + sqrt(5))^m). %F A247239 a(4,m) = 2^(2*m + 1) + 3^m + 2^(2*m + 1)*3^m. %F A247239 First formulas for columns: %F A247239 a(n,0) = n + 1. %F A247239 a(n,1) = (n + 1)*(n + 2)*(n + 3)/6. %F A247239 a(n,2) = coefficient of x^n in the expansion of (1 - x^4)/(1 - x)^8. %F A247239 Let b(N,m) be (N/2)^m times the coefficient of x^(2*m) in 1-N*x*cot(N*arcsin(x))/ sqrt(1-x^2). Then for m>0, a(n,m) = b(n+2,m). - _Ira M. Gessel_, Apr 04 2023 %e A247239 Array a(n,m) begins: %e A247239 1, 1, 1, 1, 1, 1, 1, 1, ... 1 (A000012) %e A247239 2, 4, 8, 16, 32, 64, 128, 256, ... 2^(m+1) (A000079) %e A247239 3, 10, 36, 136, 528, 2080, 8256, 32896, ... A007582 %e A247239 4, 20, 120, 800, 5600, 40000, 288000, 2080000, ... A093123 %e A247239 5, 35, 329, 3611, 42065, 499955, 5980889, 71698571, ... not in the OEIS %e A247239 ... %e A247239 1st column is n+1 (A000027). %e A247239 2nd column is A000292. %e A247239 3rd column is not in the OEIS. %t A247239 a[n_, m_] := ((n + 2)/2)^m*Sum[1/Sin[k*(Pi/(n + 2))]^(2*m), {k, 1, n + 1}]; Table[a[n - m, m] // FullSimplify, {n, 0, 10}, {m, 0, n}] // Flatten %o A247239 (PARI) a(n,m)={t=Pi/(n+2);u=1+n/2;round(sum(k=1,n+1,(u/sin(k*t)^2)^m))} \\ _M. F. Hasler_, Dec 03 2014 %Y A247239 Cf. A000079, A000292, A007582, A093123. %K A247239 nonn,tabl %O A247239 0,2 %A A247239 _Jean-François Alcover_, Nov 28 2014