This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247246 #46 Feb 16 2025 08:33:23 %S A247246 36,92,88,104,40,68,148,27,125,64,104,4,153,27,171,29,20,196,232,144, %T A247246 56,312,280,108,188,199,113,67,189,72,344,16,112,232,268,63,45,392, %U A247246 292,32,76,8,80,587,50,147,456,184,288,488,115,772,137,36,40,212,248 %N A247246 Differences of consecutive Achilles numbers. %C A247246 29 is the first prime in this sequence, and it equals 1352 - 1323. Clearly, if the difference is prime, then these two Achilles numbers must be relatively prime, so primes appear in this sequence rarely. However, are there infinitely many n such that a(n) is prime? %C A247246 The number 1 can also appear in this sequence, because it equals 5425069448 - 5425069447 = (2^3 * 26041^2) - (7^3 * 41^2 * 97^2). Does every natural number appear in this sequence? If so, do they appear infinitely often? %H A247246 Amiram Eldar, <a href="/A247246/b247246.txt">Table of n, a(n) for n = 1..10000</a> %H A247246 Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_053.htm">Problem 53</a>, The Prime Puzzles and Problems Connection. %H A247246 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AchillesNumber.html">Achilles number</a>. %H A247246 Wikipedia, <a href="http://en.wikipedia.org/wiki/Achilles_number">Achilles number</a>. %F A247246 a(n) = A052486(n+1) - A052486(n). %p A247246 f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc: %p A247246 Achilles:= select(f, [$1..10^5]): %p A247246 seq(Achilles[i+1]-Achilles[i],i=1..nops(Achilles)-1); # _Robert Israel_, Dec 13 2014 %t A247246 achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1]; %t A247246 Select[Range[10^4], achillesQ] // Differences (* _Jean-François Alcover_, Sep 26 2020 *) %o A247246 (PARI) isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); } %o A247246 lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]);} \\ _Michel Marcus_, Nov 29 2014 %o A247246 (Python) %o A247246 from math import isqrt %o A247246 from sympy import mobius, integer_nthroot %o A247246 def A247246(n): %o A247246 def squarefreepi(n): %o A247246 return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A247246 def bisection(f, kmin=0, kmax=1): %o A247246 while f(kmax) > kmax: kmax <<= 1 %o A247246 while kmax-kmin > 1: %o A247246 kmid = kmax+kmin>>1 %o A247246 if f(kmid) <= kmid: %o A247246 kmax = kmid %o A247246 else: %o A247246 kmin = kmid %o A247246 return kmax %o A247246 def f(x): %o A247246 c, l = n+x+1, 0 %o A247246 j = isqrt(x) %o A247246 while j>1: %o A247246 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A247246 w = squarefreepi(k2-1) %o A247246 c -= j*(w-l) %o A247246 l, j = w, isqrt(x//k2**3) %o A247246 c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())) %o A247246 return c %o A247246 return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # _Chai Wah Wu_, Sep 10 2024 %Y A247246 Cf. A052486, A076446, A053289. %K A247246 nonn,easy %O A247246 1,1 %A A247246 _Eric Chen_, Nov 28 2014