This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247249 #18 May 06 2025 11:15:24 %S A247249 1,1,4,22,166,1582,18232,246508,3825244,67001212,1307450224, %T A247249 28126466824,661290689416,16869784837288,464080969569184, %U A247249 13694525105228368,431491492805617168,14458331664269020432,513376963627111206976,19255197624159957025888 %N A247249 a(n) = (2*n-1)*a(n-1) + (n-1)*a(n-2) with a(0) = a(1) = 1. %H A247249 G. C. Greubel, <a href="/A247249/b247249.txt">Table of n, a(n) for n = 0..400</a> %F A247249 a(n) = n! / (-2)^n * Sum_{k=0..n} (-4)^k * binomial(k - 1/4, k) / (n-k)!. %F A247249 E.g.f.: exp(-x/2) * (1-2*x)^(-3/4). %F A247249 E.g.f. A(x) satisfies 0 = A(x)*(x+1) + A'(x)*(2*x-1). %F A247249 a(n) ~ (n/e)^(n+1/4) * 2^n * Gamma(1/4) / sqrt(Pi). %F A247249 0 = +a(n)*(+a(n+1) + 3*a(n+2) - a(n+3)) + a(n+1)*(+a(n+1) + 5*a(n+2) - 2*a(n+3)) + a(n+2)*(+2*a(n+2)) for all integer n>=0. %e A247249 G.f. = 1 + x + 4*x^2 + 22*x^3 + 166*x^4 + 1582*x^5 + 18232*x^6 + ... %t A247249 a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {3/4, -n}, {}, 4] / (-2)^n]; %t A247249 a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[-x/2] (1 - 2 x)^(-3/4), {x, 0, n}]]; %t A247249 a[ n_] := If[ n < 0, 0, n! / (-2)^n Sum[ (-4)^k Binomial[ k - 1/4, k] / (n - k)!, {k, 0, n}]]; %t A247249 a[ n_] := If[ n < 0, 0, RecurrenceTable[ {a[k] == (2 k - 1) a[k + 1] + (k - 1) a[k], a[0] == a[1] == 1}, a, {k, n, n}]]; %t A247249 nxt[{n_,a_,b_}]:={n+1,b,(2n+1)b+a n}; NestList[nxt,{1,1,1},20][[All,2]] (* _Harvey P. Dale_, Jan 16 2023 *) %o A247249 (PARI) {a(n) = if( n<0, 0, n! / (-2)^n * sum(k=0, n, (-4)^k * binomial(k - 1/4, k) / (n-k)!))}; %o A247249 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( exp(-x / 2 + A) * (1 - 2*x + A)^(-3/4), n))}; %o A247249 (Magma) I:=[1,4]; [1] cat [n le 2 select I[n] else (2*n-1)*Self(n-1) + (n-1)*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Aug 03 2018 %Y A247249 Cf. A002801. %K A247249 nonn %O A247249 0,3 %A A247249 _Michael Somos_, Nov 28 2014