This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247257 #49 Dec 13 2024 11:24:27 %S A247257 1,1,2,2,4,2,2,4,2,4,2,4,4,2,8,8,8,2,2,8,4,2,2,8,4,4,2,4,4,8,2,16,4,8, %T A247257 8,4,4,2,8,16,8,4,2,4,8,2,2,16,2,4,16,8,4,2,8,8,4,4,2,16,4,2,4,16,16, %U A247257 4,2,16,4,8,2,8,8,4,8,4,4,8,2,32 %N A247257 The number of octic characters modulo n. %C A247257 Number of solutions to x^8 == 1 (mod n). - _Jianing Song_, Nov 10 2019 %H A247257 Charles R Greathouse IV, <a href="/A247257/b247257.txt">Table of n, a(n) for n = 1..10000</a> %H A247257 Steven Finch, <a href="http://arxiv.org/abs/0907.4894">Quartic and octic characters modulo n</a>, arXiv:0907.4894 [math.NT], 2009. %F A247257 Multiplicative with a(p^e) = p^min(e-1, 4) if p = 2, gcd(8, p-1) if p > 2. - _Jianing Song_, Nov 10 2019 %p A247257 A247257 := proc(n) %p A247257 local a,pf,p,r; %p A247257 a := 1 ; %p A247257 for pf in ifactors(n)[2] do %p A247257 p := op(1,pf); %p A247257 r := op(2,pf); %p A247257 if p = 2 then %p A247257 if r >= 5 then %p A247257 a := a*16 ; %p A247257 else %p A247257 a := a*op(r,[1,2,4,8]) ; %p A247257 end if; %p A247257 elif modp(p,4) = 3 then %p A247257 a := a*2; %p A247257 elif modp(p,8) = 5 then %p A247257 a := a*4; %p A247257 elif modp(p,8) = 1 then %p A247257 a := a*8; %p A247257 else %p A247257 error %p A247257 end if; %p A247257 end do: %p A247257 a ; %p A247257 end proc: %t A247257 g[p_, e_] := Which[p==2, 2^Min[e-1, 4], Mod[p, 4]==3, 2, Mod[p, 8]==5, 4, True, 8]; %t A247257 a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; %t A247257 Array[a, 80] (* _Jean-François Alcover_, Nov 26 2017, after _Charles R Greathouse IV_ *) %o A247257 (PARI) g(p,e)=if(p==2, 2^min(e-1,4), if(p%4==3, 2, if(p%8==5, 4, 8))) %o A247257 a(n)=my(f=factor(n)); prod(i=1,#f~, g(f[i,1],f[i,2])) \\ _Charles R Greathouse IV_, Mar 02 2015 %Y A247257 Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), A319101 (k=7), this sequence (k=8). %K A247257 mult,nonn,easy %O A247257 1,3 %A A247257 _R. J. Mathar_, Mar 02 2015