This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247270 #8 Sep 13 2014 14:45:05 %S A247270 6,10,6,8,2,7,6,3,1,2,4,5,0,1,4,15,2,0,3,2,1,9,3,1,0,3,17,0,1,2,2,4,0, %T A247270 1,1,7,5,0,0,2,3,1,0,1,2,0,3,0,1,2,6,2,0,1,2,1,1,0,1,0,0,7,0,2,2,2,0, %U A247270 1,1,1,25,0,0,0,2,5,1,0,1,2,0,3,0,1,0,2 %N A247270 Let k == 1 or 5 (mod 6) (A007310). a(n) is the greatest number of the initial values of k such that k^2+6*n-4 divided by the maximal possible power of 3 takes only prime values or 1. %C A247270 In the first 2*10^7 terms the numbers 15, 16, 17 and 25 appear only once. Here is the distribution: %C A247270 0 16206595 %C A247270 1 3157812 %C A247270 2 547566 %C A247270 3 71442 %C A247270 4 12617 %C A247270 5 2848 %C A247270 6 817 %C A247270 7 211 %C A247270 8 53 %C A247270 9 20 %C A247270 10 11 %C A247270 11 2 %C A247270 12 2 %C A247270 13 0 %C A247270 14 0 %C A247270 15 1 %C A247270 16 1 %C A247270 17 1 %C A247270 18 0 %C A247270 19 0 %C A247270 20 0 %C A247270 21 0 %C A247270 22 0 %C A247270 23 0 %C A247270 24 0 %C A247270 25 1 %e A247270 For n=1, we have 1,1,17,41,19,97,121. So a(1)=6. %K A247270 nonn %O A247270 1,1 %A A247270 _Vladimir Shevelev_ and _Peter J. C. Moses_, Sep 11 2014