cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247289 Number of weak peaks in all peakless Motzkin paths of length n.

This page as a plain text file.
%I A247289 #12 Jul 24 2022 12:43:13
%S A247289 0,0,0,2,7,18,45,110,267,652,1602,3960,9845,24594,61689,155270,391962,
%T A247289 991968,2515964,6393610,16275174,41491776,105922244,270734244,
%U A247289 692756227,1774418286,4549173861,11672860634,29975156134,77029918152,198083586300,509692521982
%N A247289 Number of weak peaks in all peakless Motzkin paths of length n.
%C A247289 A weak peak of a Motzkin path is a vertex on the top of a hump.
%C A247289 A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the peakless Motzkin path uhu*h*ddu*h*h*d, where u=(1,1), h=(1,0), d(1,-1), has 5 weak peaks (shown by the stars).
%C A247289 a(n) = Sum(k*A247288(n,k), 0<=k<=n-1).
%H A247289 Alois P. Heinz, <a href="/A247289/b247289.txt">Table of n, a(n) for n = 0..1000</a>
%F A247289 G.f.: (2-z)*z^3*g/((1-z)^2*(1-z+z^2-2*z^2*g)), where g is defined by g = 1 + z*g + z^2*g*(g-1).
%F A247289 D-finite with recurrence n*(n-1)*a(n) +(-7*n^2+28*n-31)*a(n-1) +(n-2)*(13*n-48)*a(n-2) +(-5*n^2+21*n-6)*a(n-3) +(7*n^2-43*n+82)*a(n-4) -(13*n-24)*(n-5)*a(n-5) +(4*n-5)*(n-6)*a(n-6)=0. - _R. J. Mathar_, Jul 24 2022
%e A247289 a(4)=7 because the peakless Motzkin paths u*h*dhh, hu*h*dh, and u*h*h*d  have 0, 2, 2, and 3 weak peaks (shown by the stars).
%p A247289 f := (2-z)*z^3*g/((1-z)^2*(1-z+z^2-2*z^2*g)): eqg := g = 1+z*g+z^2*g*(g-1): g := RootOf(eqg, g): fser := series(f, z = 0, 35): seq(coeff(fser, z, n), n = 0 .. 33);
%Y A247289 Cf. A004148, A247288.
%K A247289 nonn
%O A247289 0,4
%A A247289 _Emeric Deutsch_, Sep 14 2014