cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247291 Number of weighted lattice paths B(n) having no uhd strings.

This page as a plain text file.
%I A247291 #17 Sep 29 2021 11:19:59
%S A247291 1,1,2,4,7,15,32,69,154,346,786,1806,4180,9745,22865,53938,127865,
%T A247291 304447,727733,1745736,4201350,10140975,24544000,59551327,144822097,
%U A247291 352940719,861839226,2108381480,5166749329,12681855551,31174671514,76742344774
%N A247291 Number of weighted lattice paths B(n) having no uhd strings.
%C A247291 B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
%C A247291 a(n) = A247290(n,0).
%H A247291 Alois P. Heinz, <a href="/A247291/b247291.txt">Table of n, a(n) for n = 0..1000</a>
%H A247291 M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.
%F A247291 G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z).
%F A247291 D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +3*(n-3)*a(n-4) +(-2*n+9)*a(n-5) +2*(-n+6)*a(n-6) +(n-9)*a(n-8)=0. - _R. J. Mathar_, Sep 29 2021
%e A247291 a(4)=7 because we have hhhh, hhH, hHh, Hhh, HH, hud, and udh.
%p A247291 eq := G = 1+z*G+z^2*G+z^3*(G-z)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
%p A247291 # second Maple program:
%p A247291 b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
%p A247291       `if`(n=0, 1, b(n-1, y, `if`(t=1, 2, 0))+`if`(n>1, b(n-2,
%p A247291        y, 0)+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0))))
%p A247291     end:
%p A247291 a:= n-> b(n, 0$2):
%p A247291 seq(T(n), n=0..40); # _Alois P. Heinz_, Sep 16 2014
%t A247291 b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, 0] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)
%Y A247291 Cf. A247290, A247293, A247295.
%K A247291 nonn
%O A247291 0,3
%A A247291 _Emeric Deutsch_, Sep 16 2014