cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247293 Number of weighted lattice paths B(n) having no uHd strings.

This page as a plain text file.
%I A247293 #16 Jul 26 2022 14:45:13
%S A247293 1,1,2,4,8,16,35,77,172,391,899,2085,4877,11490,27236,64916,155483,
%T A247293 374027,903286,2189219,5322965,12980660,31740404,77804885,191160040,
%U A247293 470662449,1161123461,2869754099,7104856781,17618234456,43754467510,108816781175
%N A247293 Number of weighted lattice paths B(n) having no uHd strings.
%C A247293 B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
%C A247293 a(n) = A247292(n,0).
%H A247293 Alois P. Heinz, <a href="/A247293/b247293.txt">Table of n, a(n) for n = 0..1000</a>
%H A247293 M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.
%F A247293 G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2).
%F A247293 D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4) +(2*n-9)*a(n-5) +2*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-12)*a(n-10)=0. - _R. J. Mathar_, Jul 26 2022
%e A247293 a(6)=35 because among the 37 (=A004148(7)) members of B(6) only huHd and uHdh contain uHd.
%p A247293 eq := G = 1+z*G+z^2*G+z^3*(G-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
%p A247293 # second Maple program:
%p A247293 b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
%p A247293       `if`(n=0, 1, b(n-1, y, 0)+`if`(n>1, b(n-2, y, `if`(t=1,
%p A247293       2, 0))+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0))))
%p A247293     end:
%p A247293 a:= n-> b(n, 0$2):
%p A247293 seq(T(n), n=0..40);  # _Alois P. Heinz_, Sep 16 2014
%t A247293 b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, 0] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)
%Y A247293 Cf. A004148, A247291, A247292, A247295.
%K A247293 nonn
%O A247293 0,3
%A A247293 _Emeric Deutsch_, Sep 16 2014