cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247296 Number of uhd and uHd in all weighted lattice paths B(n).

This page as a plain text file.
%I A247296 #21 Sep 08 2022 08:46:09
%S A247296 0,0,0,0,1,3,7,18,45,112,281,706,1778,4490,11363,28814,73199,186257,
%T A247296 474635,1211122,3094171,7913765,20261142,51921920,133171656,341836748,
%U A247296 878104607,2257208148,5805964495,14942942127,38480449261,99145105834,255573465001,659114680270
%N A247296 Number of uhd and uHd in all weighted lattice paths B(n).
%C A247296 B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
%C A247296 a(n) = A110320(n-3) + A110320(n-4) (n>=5).
%H A247296 G. C. Greubel, <a href="/A247296/b247296.txt">Table of n, a(n) for n = 0..1000</a>
%H A247296 M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.
%F A247296 G.f.: G = z^4*(1 + z)*g/(1 - z - z^2 - 2*z^3*g), where g = 1 + z*g + z^2*g + z^3*g^2.
%F A247296 D-finite with recurrence +(n-1)*(202*n-903)*a(n) +(-250*n^2+1095*n-691)*a(n-1) +(-510*n^2+4095*n-8039)*a(n-2) +(-558*n^2+4287*n-7831)*a(n-3) +(-106*n^2+1587*n-4575)*a(n-4) +(154*n-547)*(n-7)*a(n-5)=0. - _R. J. Mathar_, Jul 24 2022
%e A247296 a(6)=7 because among the 37 (=A004148(7)) members of B(6) only (uhd)hh, h(uhd)h, hh(uhd), H(uhd), (uhd)H, (uHd)h, and h(uHd) contain uhd or uHd (shown between parentheses).
%e A247296 G.f. = x^4 + 3*x^5 + 7*x^6 + 18*x^7 + 45*x^8 + 112*x^9 + 281*x^10 + ...
%p A247296 eqg := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eqg, g): H := z^4*(1+z)*g/(1-z-z^2-2*z^3*g): Hser := series(H, z = 0, 40): seq(coeff(Hser, z, n), n = 0 .. 35);
%t A247296 a[ n_] := With[{t = (1 - 3 x + x^2) (1 + x + x^2)}, SeriesCoefficient[ x (x + 1) (-1 + (1 - x - x^2) / Sqrt[t]) / 2, {x, 0, n}]]; (* _Michael Somos_, Sep 16 2014 *)
%o A247296 (PARI) x='x+O('x^30); concat(vector(4), Vec(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)))/2)) \\ _G. C. Greubel_, Aug 05 2018
%o A247296 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)) )/2)); // _G. C. Greubel_, Aug 05 2018
%Y A247296 Cf. A004148, A110320, A247294.
%K A247296 nonn
%O A247296 0,6
%A A247296 _Emeric Deutsch_, Sep 16 2014