This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247297 #6 Sep 17 2014 15:48:13 %S A247297 1,1,2,4,8,17,36,1,80,2,180,5,410,13,946,32,2203,80,5173,199,1,12233, %T A247297 499,3,29108,1255,9,69643,3161,28,167437,7984,81,404311,20206,231, %U A247297 980125,51228,650,1,2384441,130090,1812,4,5819576,330835,5016,14 %N A247297 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having k uudd strings. %C A247297 B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps. %C A247297 Row n contains 1 + floor(n/6) entries. %C A247297 Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers). %C A247297 T(n,0) = A247298(n). %C A247297 Sum(k*T(n,k), k=0..n) =A110320(n-5) (n>=6) %H A247297 M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306. %F A247297 G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^3 + t*z^3). %e A247297 T(6,1)=1 because among the 37 (=A004148(7)) paths in B(6) only uudd contains uudd. %e A247297 T(13,2)=3 because we have huudduudd, uuddhuudd, and uudduuddh. %e A247297 Triangle starts: %e A247297 1; %e A247297 1; %e A247297 2; %e A247297 4; %e A247297 8; %e A247297 17; %e A247297 36,1; %e A247297 80,2; %p A247297 eq := G = 1+z*G+z^2*G+z^3*(G-z^3+t*z^3)*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, k), k = 0 .. floor((1/6)*n)) end do; # yields sequence in triangular form %Y A247297 Cf. A004148, A110320, A247298. %K A247297 nonn,tabf %O A247297 0,3 %A A247297 _Emeric Deutsch_, Sep 17 2014