cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247302 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 >= k <= 2, consisting of segments given by the vectors (1,1), (2,1), (1,-1).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 2, 2, 2, 4, 4, 4, 8, 6, 8, 12, 12, 12, 24, 20, 24, 40, 36, 40, 72, 64, 72, 128, 112, 128, 224, 200, 224, 400, 352, 400, 704, 624, 704, 1248, 1104, 1248, 2208, 1952, 2208, 3904, 3456, 3904, 6912, 6112, 6912, 12224, 10816, 12224
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2014

Keywords

Examples

			First 10 columns:
0 .. 1 .. 1 .. 2 .. 4 .. 6 .. 12 .. 20 .. 36 .. 64
1 .. 0 .. 2 .. 2 .. 4 .. 8 .. 12 .. 24 .. 40 .. 72
0 .. 1 .. 0 .. 2 .. 2 .. 4 .. 8 ... 12 .. 24 .. 40
T(4,1) counts these 4 paths, given as vector sums applied to (0,0):
(1,1) + (1,-1) + (1,1) + (1,-1);
(1,1) + (1,-1) + (1,-1) + (1,1);
(1,-1) + (1,1) + (1,-1) + (1,1);
(1,-1) + (1,1) + (1,1) + (1,-1).
		

Crossrefs

Cf. A247050, A247301, A061275 (column sums).

Programs

  • Mathematica
    t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0;
    t[1, 0] = 1; t[1, 1] = 0; t[1, 2] = 1;
    t[2, 0] = 0; t[2, 1] = 2; t[2, 2] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] + t[n - 2, 0];
    t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 2, 1];
    TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]]
    Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]]   (* A247302 *)

Formula

(row 0, the bottom row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 1, r(2) = 0;
(row 1, the middle row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 1, r(1) = 0, r(2) = 2;
(row 2, the top row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 1, r(2) = 1.
From Chai Wah Wu, Jan 24 2020: (Start)
a(n) = 2*a(n-6) + 2*a(n-9) for n > 8.
G.f.: (-x^8 - x^5 - x^3 - x)/(2*x^9 + 2*x^6 - 1). (End)