A247304
Expected value of trace(O)^(2n), where O is a 5 X 5 orthogonal matrix randomly selected according to Haar measure.
Original entry on oeis.org
1, 3, 15, 105, 945, 10263, 127699, 1751685, 25807445, 401449271, 6519160851, 109656966853, 1899821492925, 33757439931675, 613135175204151, 11352879180474205, 213825919244349885, 4089023317563827335, 79269914519539177315, 1555788699527063688453
Offset: 1
-
A247304 := proc (n) return (1/2)*integrate(integrate((1-cos(x))*(1-cos(y))*(cos(x)-cos(y))^2*(1+2*cos(x)+2*cos(y))^(2*n), y = 0 .. 2*Pi), x = 0 .. 2*Pi)/Pi^2 end proc; seq(A247304(n), n = 1 .. 20);
A246860
Expected value of trace(O)^(2n), where O is a 4 X 4 orthogonal matrix randomly selected according to Haar measure.
Original entry on oeis.org
1, 3, 15, 105, 903, 8778, 92235, 1023165, 11821953, 141061206, 1727926291, 21634600078, 275950576450, 3576315994020, 46995014634435, 625082431593285, 8403885851894445, 114069364107664350, 1561609592248119645, 21543838447412548410, 299299110959202973710
Offset: 1
-
A246860 := proc (n) return (1/8)*integrate(integrate((cos(x)-cos(y))^2*(2*cos(x)+2*cos(y))^(2*n), y = 0 .. 2*Pi), x = 0 .. 2*Pi)/Pi^2+(1/2)*integrate((1-cos(z)^2)*(2*cos(z))^(2*n), z = 0 .. 2*Pi)/Pi end proc; seq(A246860(n), n = 1 .. 21);
-
a[n_] := a[n] = (1/8)*Integrate[Integrate[(Cos[x] - Cos[y])^2 * (2 Cos[x] + 2 Cos[y])^(2 n), {y, 0, 2 Pi}], {x, 0, 2 Pi}]/ Pi^2 + (1/2)*Integrate[(1 - Cos[z]^2)*(2 Cos[z])^(2 n), {z, 0, 2 Pi}]/Pi;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 05 2023 *)
Showing 1-2 of 2 results.
Comments