This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247309 #11 Sep 14 2014 14:26:57 %S A247309 1,0,0,1,1,1,2,3,3,5,8,8,13,21,21,34,55,55,89,144,144,233,377,377,610, %T A247309 987,987,1597,2584,2584,4181,6765,6765,10946,17711,17711,28657,46368, %U A247309 46368,75025,121393,121393,196418,317811,317811,514229,832040,832040 %N A247309 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1), (1,-2). %C A247309 Every member of T is a Fibonacci number, and the sum of the numbers in column n is A000045(2n+2). %H A247309 Clark Kimberling, <a href="/A247309/b247309.txt">Table of n, a(n) for n = 0..1000</a> %F A247309 Let F = A000045 (Fibonacci numbers); then %F A247309 (row 0, the bottom row) = (F(2n)), n >= 0; %F A247309 (row 1, the middle row) = (F(2n)), n >= 0; %F A247309 (row 2, the top row) = (F(2n-1)), n >= 0. %F A247309 (n-th column sum) = (F(2n+2)), n >= 0. %e A247309 First 10 columns: %e A247309 0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584 %e A247309 0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584 %e A247309 1 .. 1 .. 2 .. 5 .. 13 .. 34 .. 89 ... 233 .. 610 ... 1597 %e A247309 T(2,2) counts these 3 paths, given as vector sums applied to (0,0): %e A247309 (1,2) + (1,0); (1,1) + (1,1); (1,0) + (1,2). %t A247309 t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 1; %t A247309 t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1]; %t A247309 t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]; %t A247309 t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2] %t A247309 TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *) %t A247309 Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247309 *) %Y A247309 Cf. A247049, A247310, A000045. %K A247309 nonn,tabf,easy %O A247309 0,7 %A A247309 _Clark Kimberling_, Sep 12 2014