This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247311 #14 Nov 10 2024 21:45:46 %S A247311 1,0,0,1,1,0,2,2,1,4,5,3,9,12,8,21,29,20,50,70,49,120,169,119,289,408, %T A247311 288,697,985,696,1682,2378,1681,4060,5741,4059,9801,13860,9800,23661, %U A247311 33461,23660,57122,80782,57121,137904,195025,137903,332929,470832,332928 %N A247311 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1). %C A247311 Also, T(n,k) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = k, and for 0 < i <= n, s(i) is in {0,1,2}, and s(i) - s(i-1) is in {-1,0,1}. %C A247311 (row 0, the bottom row): A024537; %C A247311 (row 1, the middle row): A000129; %C A247311 (row 2, the top row): A048739; %C A247311 (n-th column sum): A000129. %H A247311 Clark Kimberling, <a href="/A247311/b247311.txt">Table of n, a(n) for n = 0..1000</a> %e A247311 First 10 columns: %e A247311 0 .. 0 .. 1 .. 3 .. 8 ... 20 .. 49 .. 119 .. 288 .. 696 %e A247311 0 .. 1 .. 2 .. 5 .. 12 .. 29 .. 70 .. 169 .. 408 .. 985 %e A247311 1 .. 1 .. 2 .. 4 .. 9 ... 21 .. 50 .. 120 .. 289 .. 697 %e A247311 T(3,2) counts these 3 paths, given as vector sums applied to (0,0): %e A247311 (1,1) + (1,1) + (1,0); (1,1) + (1,0) + (1,1); (1,0) + (1,1) + (1,1). %t A247311 t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 0; %t A247311 t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1]; %t A247311 t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]; %t A247311 t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 1, 2] %t A247311 TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *) %t A247311 Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247311 *) %Y A247311 Cf. A247049, A247309, A247310, A000129, A024537, A048739. %K A247311 nonn,tabf,easy %O A247311 0,7 %A A247311 _Clark Kimberling_, Sep 12 2014