A247316 Numbers x such that the sum of all their cyclic permutations is equal to that of all cyclic permutations of their Euler totient functions phi(x).
1, 21, 27, 34, 54, 63, 81, 171, 205, 212, 214, 237, 243, 272, 291, 315, 324, 333, 342, 351, 356, 358, 394, 402, 405, 424, 432, 441, 459, 493, 502, 504, 513, 538, 540, 544, 565, 585, 624, 630, 663, 702, 712, 714, 716, 718, 723, 729, 745, 804, 810, 831, 834, 835
Offset: 1
Examples
The sum of the cyclic permutations of 171 is 171 + 117 + 711 = 999; phi(171) = 108 and the sum of its cyclic permutations is 108 + 810 + 81 = 999. The sum of the cyclic permutations of 1863 is 1863 + 3186 + 6318 + 8631 = 19998; phi(1863) = 1188 and the sum of its cyclic permutations is 1188 + 8118 + 8811 + 1881 = 19998.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..5000
Programs
-
Maple
with(numtheory):P:=proc(q) local a,b,c,d,k,n; for n from 1 to q do a:=n; b:=a; c:=ilog10(a); for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); b:=b+a; od; a:=phi(n); d:=a; c:=ilog10(a); for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); d:=d+a; od; if d=b then print(n); fi; od; end: P(10^9);
Comments