cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247318 Decimal expansion of p_2, a probability associated with continuant polynomials.

Original entry on oeis.org

0, 4, 8, 4, 8, 0, 8, 0, 1, 4, 4, 9, 4, 6, 3, 6, 3, 2, 7, 0, 5, 7, 2, 4, 9, 3, 3, 8, 8, 2, 4, 7, 6, 5, 5, 6, 3, 3, 3, 0, 5, 6, 0, 0, 6, 6, 9, 5, 2, 3, 7, 1, 3, 9, 7, 7, 1, 6, 6, 5, 5, 9, 9, 8, 3, 8, 6, 6, 2, 0, 4, 8, 2, 0, 5, 4, 0, 2, 2, 5, 4, 2, 7, 6, 2, 5, 8, 8, 8, 8, 8, 7, 3, 1, 1, 3, 3, 9, 2, 4, 7, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 12 2014

Keywords

Examples

			0.04848080144946363270572493388247655633305600669523713977...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.

Crossrefs

Programs

  • Mathematica
    digits = 101; s = NSum[(-1)^n*(n + 1)*Zeta[n + 4]*(Zeta[n + 2] - 1), {n, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; p2 = -5 + 2*Pi^2/3 - 2*Zeta[3] + 2*s; Join[{0}, RealDigits[p2, 10, digits] // First]

Formula

p_2 = Sum_{i >= 1}(sum_{j >= 1} 1/((i*j + 1)^2*(i*j + i + 1)^2)).
p_2 = Sum_{n >= 0} (-1)^n*(n + 1)*zeta(n + 4)*(zeta(n + 2) - 1).