A247318 Decimal expansion of p_2, a probability associated with continuant polynomials.
0, 4, 8, 4, 8, 0, 8, 0, 1, 4, 4, 9, 4, 6, 3, 6, 3, 2, 7, 0, 5, 7, 2, 4, 9, 3, 3, 8, 8, 2, 4, 7, 6, 5, 5, 6, 3, 3, 3, 0, 5, 6, 0, 0, 6, 6, 9, 5, 2, 3, 7, 1, 3, 9, 7, 7, 1, 6, 6, 5, 5, 9, 9, 8, 3, 8, 6, 6, 2, 0, 4, 8, 2, 0, 5, 4, 0, 2, 2, 5, 4, 2, 7, 6, 2, 5, 8, 8, 8, 8, 8, 7, 3, 1, 1, 3, 3, 9, 2, 4, 7, 7
Offset: 0
Examples
0.04848080144946363270572493388247655633305600669523713977...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.
Links
- Wikipedia, Continuant polynomial.
Programs
-
Mathematica
digits = 101; s = NSum[(-1)^n*(n + 1)*Zeta[n + 4]*(Zeta[n + 2] - 1), {n, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; p2 = -5 + 2*Pi^2/3 - 2*Zeta[3] + 2*s; Join[{0}, RealDigits[p2, 10, digits] // First]
Formula
p_2 = Sum_{i >= 1}(sum_{j >= 1} 1/((i*j + 1)^2*(i*j + i + 1)^2)).
p_2 = Sum_{n >= 0} (-1)^n*(n + 1)*zeta(n + 4)*(zeta(n + 2) - 1).