cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247323 Number of paths from (0,0) to (n,0), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 7, 18, 29, 63, 116, 229, 445, 856, 1677, 3229, 6298, 12185, 23675, 45922, 89097, 172931, 335460, 651065, 1263145, 2451184, 4756105, 9228777, 17907538, 34747357, 67424063, 130828370, 253859365, 492585879, 955810772, 1854647997, 3598744709
Offset: 0

Views

Author

Clark Kimberling, Sep 13 2014

Keywords

Comments

Also, a(n) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = 0, and for i > 0, s(i) is in {0,1,2,3} and s(i) - s(i-1) is in {-1,1,2} for 1 <= i <= n; also, a(n) = row 0 (the bottom row) of the array at A247321, and a(n+1) = row 1 of the same array.

Examples

			a(5) counts these 5 paths, each represented by a vector sum applied to (0,0):
(1,2) + (1,1) + (1,-1) + (1,-1) + (1,-1);
(1,1) + (1,2) + (1,-1) + (1,-1) + (1,-1);
(1,2) + (1,-1) + (1,1) + (1,-1) + (1,-1);
(1,1) + (1,-1) + (1,2) + (1,-1) + (1,-1);
(1,2) + (1,-1) + (1,-1) + (1,1) + (1,-1).
		

Crossrefs

Programs

  • Mathematica
    z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
    t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
    t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
    t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
    Table[t[n, 0], {n, 0, z}];  (* A247323 *)

Formula

Empirically, a(n) = 3*a(n-2) + 2*a(n-3) - a(n-4) and g.f. = (1 + 2*x^2 - x^3)/(1 - 3 x^2 - 2 x^3 + x^4).