cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247326 Number of paths from (0,0) to (n,3), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).

Original entry on oeis.org

0, 0, 2, 2, 6, 10, 20, 40, 74, 150, 282, 558, 1072, 2088, 4050, 7850, 15254, 29562, 57412, 111344, 216106, 419294, 813594, 1578750, 3063264, 5944144, 11533698, 22380210, 43426118, 84263882, 163505076, 317263672, 615616874, 1194537286, 2317872890, 4497581934
Offset: 0

Views

Author

Clark Kimberling, Sep 13 2014

Keywords

Comments

Also, a(n) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = 3, and for i > 0, s(i) is in {0,1,2,3} and s(i) - s(i-1) is in {-1,1,2} for 1 <= i <= n; also, a(n) = row 3 of the array at A247321.

Examples

			a(4) counts these 6 paths, each represented by a vector sum applied to (0,0):
(1,2) + (1,1) + (1,-1) + (1,1);
(1,1) + (1,2) + (1,-1) + (1,1);
(1,2) + (1,-1) + (1,1) + (1,1);
(1,1) + (1,-1) + (1,2) + (1,1);
(1,1) + (1,-1) + (1,1) + (1,2);
(1,1) + (1,1) + (1,-1) + (1,2).
		

Crossrefs

Programs

  • Mathematica
    z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
    t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
    t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
    t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
    Table[t[n, 3], {n, 0, z}];  (* A247326 *)

Formula

Empirically, a(n) = 3*a(n-2) + 2*a(n-3) - a(n-4) and g.f. = (2*x^2 + x^3)/(1 - 3 x^2 - 2 x^3 + x^4).