This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247329 #11 Aug 02 2019 00:02:04 %S A247329 1,2,9,58,475,4666,53116,684762,9833391,155341258,2673209561, %T A247329 49717424868,992847765988,21172798741316,479921234767976, %U A247329 11516219861132586,291523666535143823,7761036379846481206,216699016885046232187,6330257697841339549706,193043926318644060255531 %N A247329 a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1). %H A247329 Robert Israel, <a href="/A247329/b247329.txt">Table of n, a(n) for n = 0..435</a> %e A247329 Illustration of initial terms: %e A247329 a(0) = 1*1 = 1 ; %e A247329 a(1) = 1*1 + 1*1 = 2 ; %e A247329 a(2) = 1*2 + 2*3 + 1*1 = 9 ; %e A247329 a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ; %e A247329 a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ; %e A247329 a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ; %e A247329 a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ; %e A247329 a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ... %p A247329 f:= proc(n) local k; add((-1)^(n-k)*binomial(n,k)*Stirling1(n+1,k+1),k=0..n); end proc: %p A247329 map(f, [$0..30]); # _Robert Israel_, Aug 01 2019 %t A247329 Table[Sum[(-1)^(n-k) * Binomial[n,k] * StirlingS1[n+1, k+1],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 29 2014 *) %o A247329 (PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))} %o A247329 {a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n,k)*Stirling1(n+1, k+1))} %o A247329 for(n=0,30,print1(a(n),", ")) %Y A247329 Cf. A008275 (Stirling1 numbers), A211210. %K A247329 nonn %O A247329 0,2 %A A247329 _Paul D. Hanna_, Sep 26 2014