This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247340 #6 Sep 20 2014 14:20:14 %S A247340 3,8,30,46,50,76,100,144,254,266,274,286,334,380,456,494,504,516,520, %T A247340 526,566,664,670,726,756,810,836,844,874,1040,1064,1086,1130,1164, %U A247340 1216,1250,1300,1476,1714,1740,1800,1826,1834,1946,1950,2014,2194,2200,2220,2324 %N A247340 Numbers n such that each prime divisor of the semiprime n^2+1 is also a divisor of a^2+1 and b^2+1 respectively for some a, b < n. %C A247340 Or numbers n such that n^2+1 = p*q, p and q primes => p | a^2+1 and q | b^2+1 for some a,b < n. %C A247340 Subsequence of A085722 and except the first term, a(n) is even. %C A247340 The squares of the sequence are 100, 144, 3364, 6084, 7396, 10404, 24964, 45796, 47524, 68644, 71824, 93636,... %C A247340 Observation : a(n) = p*q => there exists a and b such that a^2+1 = m*p and b^2+1 = m*q. (see the examples). %H A247340 Michel Lagneau, <a href="/A247340/b247340.txt">Table of n, a(n) for n = 1..1000</a> %e A247340 3^2+1 = 2*5 => 1^1+1 = 2 and 2^2+1 = 5 ; %e A247340 8^2+1 = 5*13 => 3^2+1 = 2*5 and 5^2+1 = 2*13 ; %e A247340 30^2+1 = 17*53 => 13^2+1=2*5*17 and 23^2+1 = 2*5*53 ; %e A247340 46^2+1 = 29*73 => 17^2+1 = 2*5*29 and 27^2+1=2*5*73 ; %e A247340 50^2+1 = 41*61 => 9^2+1 = 2*41 and 11^2+1 = 2*61 ; %e A247340 76^2+1 = 53*109 => 23^2+1 = 2*5*53 and 33^2+1 = 2*5*109 ; %e A247340 100^2+1 = 73*137 => 27^2+1=2*5*73 and 37^2+1 = 2*5*137 ; %e A247340 144^2+1 = 89*233 => 55^2+1 = 2*17*89 and 89^2+1 = 2*17*233 ; %e A247340 254^2+1 = 149*433 => 105^2+1 = 2*37*149 and 179^2+1 = 2*37*433 ; %e A247340 266^2+1 = 173*409 => 93^2+1 = 2*5^2*173 and 143^2+1 = 2*5^2*409. %p A247340 with(numtheory):lst:={}: %p A247340 for n from 1 to 3000 do: %p A247340 x:=factorset(n^2+1):n0:=nops(x): %p A247340 for i from 1 to n0 do: %p A247340 lst:=lst union {x[i]}: %p A247340 od: %p A247340 lst1:={}:nn:=n+1:xx:=factorset(nn^2+1):nn0:=nops(xx): %p A247340 for j from 1 to nn0 do: %p A247340 lst1:=lst1 union {xx[j]}: %p A247340 od: %p A247340 if %p A247340 nn0=2 %p A247340 and bigomega(nn^2+1)=2 %p A247340 and {xx[1],xx[2]} intersect lst = {xx[1],xx[2]} %p A247340 then %p A247340 printf(`%d, `,n+1): %p A247340 else %p A247340 fi: %p A247340 lst:=lst union lst1: %p A247340 od: %Y A247340 Cf. A085722, A144255. %K A247340 nonn %O A247340 1,1 %A A247340 _Michel Lagneau_, Sep 14 2014