A247353
Number of paths from (0,1) to the line x = n, each consisting of segments given by the vectors (1,1), (1,2), (1,-1), with vertices (i,k) satisfying 0 <= k <= 3.
Original entry on oeis.org
1, 3, 5, 11, 20, 40, 77, 149, 291, 561, 1094, 2116, 4113, 7975, 15477, 30035, 58268, 113084, 219397, 425753, 826091, 1602969, 3110382, 6035336, 11710993, 22723803, 44093269, 85558059, 166016420, 322136912, 625072109, 1212885517, 2353473731, 4566663857
Offset: 0
a(2) counts these 5 paths, each represented by a vector sum applied to (0,1):
(1,1) + (1,1) = (1,2) + (1,-1) = (1,-1) + (1,2) = (1,1) + (1,-1) = (1,-1) + (1,1).
-
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2]
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3]
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2]
u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247352 *)
u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}];
v = Map[Total, u1] (* A247353 *)
A247354
Number of paths from (0,1) to (n,0), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
0, 1, 0, 2, 2, 5, 10, 17, 38, 66, 138, 257, 508, 981, 1900, 3702, 7154, 13925, 26966, 52381, 101594, 197150, 382578, 742257, 1440440, 2794777, 5423256, 10522954, 20418882, 39620597, 76879298, 149176601, 289460206, 561667802, 1089854522, 2114747217
Offset: 0
a(5) counts these 5 paths, each represented by a vector sum applied to (0,1):
(1,1) + (1,1) + (1,-1) + (1,-1) + (1,-1)
(1,1) + (1,-1) + (1,1) + (1,-1) + (1,-1)
(1,-1) + (1,1) + (1,1) + (1,-1) + (1,-1)
(1,1) + (1,-1) + (1,-1) + (1,1) + (1,-1)
(1,-1) + (1,1) + (1,-1) + (1,1) + (1,-1)
-
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2]
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3]
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2]
Table[t[n, 0], {n, 0, z}] (* A247354*)
A247355
Number of paths from (0,1) to (n,2), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
0, 1, 2, 3, 8, 12, 28, 49, 100, 191, 370, 724, 1392, 2721, 5254, 10223, 19812, 38456, 74628, 144769, 280984, 545107, 1057862, 2052520, 3982816, 7728177, 14995626, 29097643, 56460416, 109556004, 212580908, 412491201, 800394316, 1553079415, 3013584442
Offset: 0
a(3) counts these 3 paths, each represented by a vector sum applied to (0,1):
(1,1) + (1,1) + (1,-1);
(1,1) + (1,-1) + (1,1);
(1,-1) + (1,1) + (1,1).
-
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
Table[t[n, 2], {n, 0, z}] (* A247355 *)
Showing 1-3 of 3 results.
Comments