A247353 Number of paths from (0,1) to the line x = n, each consisting of segments given by the vectors (1,1), (1,2), (1,-1), with vertices (i,k) satisfying 0 <= k <= 3.
1, 3, 5, 11, 20, 40, 77, 149, 291, 561, 1094, 2116, 4113, 7975, 15477, 30035, 58268, 113084, 219397, 425753, 826091, 1602969, 3110382, 6035336, 11710993, 22723803, 44093269, 85558059, 166016420, 322136912, 625072109, 1212885517, 2353473731, 4566663857
Offset: 0
Examples
a(2) counts these 5 paths, each represented by a vector sum applied to (0,1): (1,1) + (1,1) = (1,2) + (1,-1) = (1,-1) + (1,2) = (1,1) + (1,-1) = (1,-1) + (1,1).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0; t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1]; t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3] t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2] u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247352 *) u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}]; v = Map[Total, u1] (* A247353 *)
Comments