A247354 Number of paths from (0,1) to (n,0), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
0, 1, 0, 2, 2, 5, 10, 17, 38, 66, 138, 257, 508, 981, 1900, 3702, 7154, 13925, 26966, 52381, 101594, 197150, 382578, 742257, 1440440, 2794777, 5423256, 10522954, 20418882, 39620597, 76879298, 149176601, 289460206, 561667802, 1089854522, 2114747217
Offset: 0
Examples
a(5) counts these 5 paths, each represented by a vector sum applied to (0,1): (1,1) + (1,1) + (1,-1) + (1,-1) + (1,-1) (1,1) + (1,-1) + (1,1) + (1,-1) + (1,-1) (1,-1) + (1,1) + (1,1) + (1,-1) + (1,-1) (1,1) + (1,-1) + (1,-1) + (1,1) + (1,-1) (1,-1) + (1,1) + (1,-1) + (1,1) + (1,-1)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0; t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1]; t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3] t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2] Table[t[n, 0], {n, 0, z}] (* A247354*)
Formula
Empirically, a(n) = 3*a(n-2) + 2*a(n-3) - a(n-4) and g.f. = (x - x^3)/(1 - 3 x^2 - 2 x^3 + x^4).
Comments