A247356 Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
3, 5, 7, 16, 17, 19, 22, 23, 30, 32, 33, 41, 45, 49, 56, 61, 67, 74, 75, 76, 88, 90, 91, 98, 99, 101, 105, 108, 115, 116, 117, 120, 125, 131, 137, 138, 140, 141, 154, 158, 164, 167, 170, 172, 175, 178, 185, 188, 189, 193, 194, 199, 203, 221, 230, 231, 234
Offset: 1
Examples
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,... {sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,.. so that a(1) = 3 and a(2) = 5.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1115
Programs
-
Mathematica
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A246356 *) Flatten[Position[t2, 1]] (* A246357 *) Flatten[Position[t3, 1]] (* A246358 *) Flatten[Position[t4, 1]] (* A247356 *)
Comments