This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247365 #25 Jul 12 2024 11:27:23 %S A247365 1,2,13,130,1807,32280,705421,18237164,544505521,18438430990, %T A247365 698246022001,29239344782022,1341545985079903,66926098621724300, %U A247365 3606825675219961657,208826700420103831480,12926842112341879416001,851962999949978920707834,59561112879709434549509941 %N A247365 Central terms of triangles A102472 and A102473. %H A247365 Reinhard Zumkeller, <a href="/A247365/b247365.txt">Table of n, a(n) for n = 1..300</a> %F A247365 a(n) = A102472(2*n-1,n) = A102473(2*n-1,n). %F A247365 a(n) = y(n,n), where y(m+2,n) = (m + n)*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - _Benedict W. J. Irwin_, Nov 03 2016 %F A247365 a(n) = round(2*BesselI(n-1,2)*BesselK(2*n-1,2)). - _Mark van Hoeij_, Nov 08 2022 %F A247365 a(n) ~ 2^(2*n - 3/2) * n^(n-1) / exp(n). - _Vaclav Kotesovec_, Nov 09 2022 %F A247365 a(n) = (-1)^n * (A001040(n-1) * A001053(2*n-1) - A001053(n-1) * A001040(2*n-1)). - _Mark van Hoeij_, Jul 10 2024 %p A247365 seq(round(2*BesselI(n-1,2)*BesselK(2*n-1,2)), n=1..30); # _Mark van Hoeij_, Nov 08 2022 %p A247365 A001040 := proc(n) options remember; %p A247365 if n < 2 then n else (n - 1)*procname(n-1) + procname(n-2) fi %p A247365 end: %p A247365 A001053 := proc(n) options remember; %p A247365 if n < 2 then 1-n else (n - 1)*procname(n-1) + procname(n-2) fi %p A247365 end: %p A247365 seq( (-1)^n * (A001040(n-1) * A001053(2*n-1) - A001053(n-1) * A001040(2*n-1)), n=1..30); # _Mark van Hoeij_, Jul 10 2024 %t A247365 Table[DifferenceRoot[Function[{y,m},{y[2+m]==(m+n)y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* _Benedict W. J. Irwin_, Nov 03 2016 *) %o A247365 (Haskell) %o A247365 a247365 n = a102473 (2 * n - 1) n %Y A247365 Cf. A102472, A102473, A058294. %K A247365 nonn %O A247365 1,2 %A A247365 _Reinhard Zumkeller_, Sep 14 2014