A247381 The area of a primitive Heronian triangle K, such that K = k^2*n for the least k, where n is the sequence index.
36, 72, 12, 36, 180, 6, 252, 72, 36, 90, 396, 12, 468, 126, 60, 7056, 2448, 72, 684, 180, 84, 198, 20700, 24, 900, 234, 5292, 252, 4176, 30, 1116, 288, 132, 306, 1260, 36, 1332, 5472, 156, 360, 5904, 42, 1548, 396, 180, 1656, 82908, 1200, 7056, 1800, 204, 468, 30528, 216
Offset: 1
Keywords
Examples
a(23)=30^2*23=20700 and the primitive Heronian triangle has sides (73, 579, 598).
Links
- N. J. Fine, On Rational Triangles, Mathematical Association of America, 83-7 (1976), 517-521.
- Jaap Top and Noriko Yui, Congruent number problems and their variants, Algorithmic Number Theory, MSRI Publications Volume 44, 2008, p. 621.
- Yahoo Answers, Is each positive integer the area of some triangle with rational sides?
Crossrefs
Cf. A224301.
Programs
-
Mathematica
getarea[n0_] := (area1=0; Do[If[IntegerQ[area=Sqrt[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]]&&area>0&&IntegerQ[k=Sqrt[area/n0]]&&GCD[a, b, c]==1, area1=area; Break[]], {c, 3, 1000}, {b, 1, c}, {a, 1, b}]; area1); Table[getarea[n], {n, 1, 100}]
Extensions
Updated and edited by Frank M Jackson, Jun 14 2016
Comments