A247384 Find the first (maximal) string of consecutive primes of length exactly n which alternate between 4*k+1 and 4*k+3 or 4*k+3 and 4*k+1 as in A002144(4*n+1) and A002145(4*n+3). The first element is a(n).
97, 11, 3, 23, 47, 167, 131, 2011, 233, 23633, 34499, 1013, 9341, 90659, 521, 51749, 505049, 1391087, 2264839, 2556713, 17123893, 2569529, 15090641, 18246451, 6160043, 1557431471, 43679609, 198572029, 701575297, 5552898499, 6639843979, 61233611783, 9005520203
Offset: 1
Keywords
Examples
a(4)=23 because 23,29,31,37 alternate 4*n+3,4*n+1,4*n+3,4*n+1 for exactly four primes and 23 is the least prime for a string of exactly four.
Links
- Jens Kruse Andersen and Giovanni Resta, Table of n, a(n) for n = 1..45 (first 38 terms from Jens Kruse Andersen)
- Jens Kruse Andersen, Consecutive Congruent Primes
Programs
-
Maple
Primes:= select(isprime,[seq(2*i+1,i=1..10^7)]): Pm4:= map(`modp`,[seq((-1)^j*Primes[j],j=1..nops(Primes))],4): Starts:= [1,op(select(t -> Pm4[t-1]<> Pm4[t], [$2..nops(Pm4)]))]: Lengths:= [seq(Starts[i+1]-Starts[i],i=1..nops(Starts)-1)]: for i from 1 to max(Lengths) do A[i]:= ListTools:-Search(i,Lengths) od: R:=[seq(A[i],i=1..max(Lengths))]: seq(`if`(a=0,0,Primes[Starts[a]]),a=R); # Robert Israel, Sep 15 2014
-
Mathematica
i = 2; While[ Mod[ Prime[i] - Prime[i - 1], 4] != 0 || Mod[ Prime[i + 1] - Prime[i], 4] != 0, i++]; T = {Prime[i]}; Do[j = 2; While[! (Product[ Mod[ Prime[k + 1] - Prime[k], 4], {k, j, j + n}] != 0 && (Mod[Prime[j] - Prime[j - 1], 4] == 0 || j == 2) && Mod[ Prime[j + n + 2] - Prime[j + n + 1], 4] == 0), j++]; T = Append[T, Prime[j]], {n, 0, 13}]; T (* Jonathan Sondow, Jun 28 2017 *)
-
PARI
v=vector(100);v[1]=7;cur=1;p=3;forprime(q=5, 1e10, if((q-p)%4==0,if(!v[cur],v[cur]=back(p,cur);print("a("cur") = "v[cur]));cur=1,cur++);p=q) \\ Charles R Greathouse IV, Sep 15 2014
Formula
a(n) = A289118(n) if and only if n > 1 and A289118(n) < A289118(n+1). - Jonathan Sondow, Jun 27 2017
Extensions
More terms from Jens Kruse Andersen, Oct 01 2014
Definition clarified by Jonathan Sondow, Jun 25 2017