cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247384 Find the first (maximal) string of consecutive primes of length exactly n which alternate between 4*k+1 and 4*k+3 or 4*k+3 and 4*k+1 as in A002144(4*n+1) and A002145(4*n+3). The first element is a(n).

Original entry on oeis.org

97, 11, 3, 23, 47, 167, 131, 2011, 233, 23633, 34499, 1013, 9341, 90659, 521, 51749, 505049, 1391087, 2264839, 2556713, 17123893, 2569529, 15090641, 18246451, 6160043, 1557431471, 43679609, 198572029, 701575297, 5552898499, 6639843979, 61233611783, 9005520203
Offset: 1

Views

Author

J. M. Bergot, Sep 15 2014

Keywords

Examples

			a(4)=23 because 23,29,31,37 alternate 4*n+3,4*n+1,4*n+3,4*n+1 for exactly four primes and 23 is the least prime for a string of exactly four.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[seq(2*i+1,i=1..10^7)]):
    Pm4:= map(`modp`,[seq((-1)^j*Primes[j],j=1..nops(Primes))],4):
    Starts:= [1,op(select(t -> Pm4[t-1]<> Pm4[t], [$2..nops(Pm4)]))]:
    Lengths:= [seq(Starts[i+1]-Starts[i],i=1..nops(Starts)-1)]:
    for i from 1 to max(Lengths) do A[i]:= ListTools:-Search(i,Lengths) od:
    R:=[seq(A[i],i=1..max(Lengths))]:
    seq(`if`(a=0,0,Primes[Starts[a]]),a=R); # Robert Israel, Sep 15 2014
  • Mathematica
    i = 2; While[ Mod[ Prime[i] - Prime[i - 1], 4] != 0 || Mod[ Prime[i + 1] - Prime[i], 4] != 0, i++]; T = {Prime[i]}; Do[j = 2; While[! (Product[ Mod[ Prime[k + 1] - Prime[k], 4], {k, j, j + n}] != 0 && (Mod[Prime[j] - Prime[j - 1], 4] == 0 || j == 2) && Mod[ Prime[j + n + 2] - Prime[j + n + 1], 4] == 0), j++]; T = Append[T, Prime[j]], {n, 0, 13}]; T (* Jonathan Sondow, Jun 28 2017 *)
  • PARI
    v=vector(100);v[1]=7;cur=1;p=3;forprime(q=5, 1e10, if((q-p)%4==0,if(!v[cur],v[cur]=back(p,cur);print("a("cur") = "v[cur]));cur=1,cur++);p=q) \\ Charles R Greathouse IV, Sep 15 2014

Formula

a(n) = A289118(n) if and only if n > 1 and A289118(n) < A289118(n+1). - Jonathan Sondow, Jun 27 2017

Extensions

More terms from Jens Kruse Andersen, Oct 01 2014
Definition clarified by Jonathan Sondow, Jun 25 2017