cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247392 Decimal expansion of 'v', a parking constant associated with the asymptotic variance of the number of cars that can be parked in a given interval.

Original entry on oeis.org

0, 3, 8, 1, 5, 6, 3, 9, 9, 1, 9, 0, 4, 2, 6, 5, 0, 5, 3, 2, 9, 1, 0, 4, 4, 9, 8, 2, 2, 5, 3
Offset: 0

Views

Author

Jean-François Alcover, Sep 16 2014

Keywords

Examples

			0.0381563991904265053291044982253...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Rényi Parking Constant, p. 279.

Crossrefs

Cf. A050996.

Programs

  • Mathematica
    digits = 30; beta[x_] := Exp[-2*(Gamma[0, x] + Log[x] + EulerGamma)]; m = NIntegrate[beta[x], {x, 0, Infinity}, WorkingPrecision -> digits+5]; alpha[x_?NumericQ] := m - NIntegrate[beta[t], {t, 0, x}, WorkingPrecision -> digits+5]; v = 4*NIntegrate[((1 - Exp[-x])*alpha[x])/(x*Exp[x]) - ((x + Exp[-x] - 1)*alpha[x]^2)/((beta[x]*x^2)* Exp[2*x]), {x, 0, Infinity}, WorkingPrecision -> digits+5] - m; Join[{0}, First[RealDigits[v, 10, digits]]]

Formula

beta(x) = exp(-2*(Gamma(0, x) + log(x) + EulerGamma)), where Gamma(0,x) is the incomplete Gamma function,
m = A050996 = Integral_{x=0..oo} beta(x) dx,
alpha(x) = m - Integral_{t=0..x} beta(t) dt,
v = 4*Integral_{x=0..oo} ((1 - exp(-x))*alpha(x))/(x*exp(x)) - ((x + exp(-x) - 1)*alpha(x)^2)/((beta(x)*x^2)* exp(2*x)) dx - m.