A272413 Asymptotic mean (normalized by n) of the second longest cycle in a random permutation on n symbols.
2, 0, 9, 5, 8, 0, 8, 7, 4, 2, 8, 4, 1, 8, 5, 8, 1, 3, 9, 8, 9, 0, 2, 9, 6, 5, 7, 8, 1, 5, 3, 4, 9, 5, 5, 6, 9, 0, 1, 1, 3, 1, 0, 3, 2, 0, 1, 6, 2, 3, 4, 3, 3, 0, 0, 0, 6, 9, 2, 1, 5, 9, 8, 8, 1, 4, 8, 5, 3, 1, 0, 8, 8, 4, 6, 4, 2, 8, 7, 2, 6, 3, 4, 2, 8, 7, 1, 6, 3, 6, 8, 2, 9, 8, 8, 3, 4, 7
Offset: 0
Examples
0.20958087428418581398902965781534955690113103201623433...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.
Links
- Xavier Gourdon, Combinatoire, Algorithmique et Géométrie des Polynomes Ecole Polytechnique, Paris 1996, page 152 [in French]
- Eric Weisstein's MathWorld, Golomb-Dickman Constant
- Wikipedia, Golomb-Dickman constant
Programs
-
Mathematica
digits = 98; NIntegrate[1 - Exp[ExpIntegralEi[-x]]*(1 - ExpIntegralEi[-x]), {x, 0, 200}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First
Formula
Integral_{0..infinity} 1 - exp(Ei(-x))*(1 - Ei(-x)) dx, where Ei is the exponential integral.