cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247435 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123....13)*.

This page as a plain text file.
%I A247435 #13 Jul 23 2025 11:34:40
%S A247435 156,39,78,52,156,156,52,39,78,156,26,14,13,156,39,78,52,156,156,52,
%T A247435 39,78,156,26,14,13,156,39,78,52,156,156,52,39,78,156,26,14,13,156,39,
%U A247435 78,52,156,156,52,39,78,156,26,14,13,156,39,78,52,156,156,52,39
%N A247435 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123....13)*.
%H A247435 Klaus Sutner and Sam Tetruashvili, <a href="http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf">Inferring automatic sequences</a> (see table on the p. 5).
%H A247435 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,1).
%F A247435 G.f.: x^2*(156 + 39*x + 78*x^2 + 52*x^3 + 156*x^4 + 156*x^5 + 52*x^6 + 39*x^7 + 78*x^8 + 156*x^9 + 26*x^10 + 14*x^11 + 13*x^12)/(1 - x^13).
%t A247435 CoefficientList[Series[(156 + 39 x + 78 x^2 + 52 x^3 + 156 x^4 + 156 x^5 + 52 x^6 + 39 x^7 + 78 x^8 + 156 x^9 + 26 x^10 + 14 x^11 + 13 x^12)/(1 - x^13), {x, 0, 60}], x]
%t A247435 PadRight[{},120,{156,39,78,52,156,156,52,39,78,156,26,14,13}] (* _Harvey P. Dale_, Mar 19 2021 *)
%o A247435 (Magma) &cat[[156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13]: n in [0..10]];
%Y A247435 Cf. A176059, A217515 - A217518, A247387, A247389 - A247391.
%K A247435 nonn,easy
%O A247435 2,1
%A A247435 _Vincenzo Librandi_, Sep 19 2014