This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247455 #14 Sep 28 2014 09:10:57 %S A247455 1,8,9,10,11,15,21,25,29,38,42,48,51,54,57,58,59,62,64,66,70,72,78,81, %T A247455 82,86,89,93,96,107,109,111,113,122,128,130,134,136,139,144,147,148, %U A247455 149,151,153,161,162,165,169,173,181,182,183,187,191,195,200,202 %N A247455 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part. %C A247455 Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247758. Let s denote any of these; what can be said about lim(#s < n)/n, where (#s < n) represents the number of numbers in s that are < n? %H A247455 Clark Kimberling, <a href="/A247455/b247455.txt">Table of n, a(n) for n = 1..1000</a> %e A247455 {1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,... %e A247455 {3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,... %e A247455 so that a(1) = 2 and a(2) = 8. %t A247455 z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]]; %t A247455 u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] %t A247455 v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] %t A247455 t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247455 t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247455 t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247455 t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247455 Flatten[Position[t1, 1]] (* A247455 *) %t A247455 Flatten[Position[t2, 1]] (* A247456 *) %t A247455 Flatten[Position[t3, 1]] (* A247457 *) %t A247455 Flatten[Position[t4, 1]] (* A247458 *) %Y A247455 Cf. A246356, A247456, A247457, A247458. %K A247455 nonn,easy,base %O A247455 1,2 %A A247455 _Clark Kimberling_, Sep 18 2014