This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247457 #14 Sep 28 2014 09:11:13 %S A247457 2,18,22,26,35,41,45,49,65,67,71,77,79,88,90,95,98,108,110,112,117, %T A247457 126,133,135,138,143,145,152,155,172,175,188,194,196,203,208,210,212, %U A247457 221,223,230,234,239,243,260,262,268,278,292,294,296,299,310,312,319 %N A247457 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part. %C A247457 Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247458. %H A247457 Clark Kimberling, <a href="/A247457/b247457.txt">Table of n, a(n) for n = 1..500</a> %e A247457 {1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,... %e A247457 {3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,... %e A247457 so that a(1) = 2. %t A247457 z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]]; %t A247457 u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] %t A247457 v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] %t A247457 t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247457 t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247457 t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247457 t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247457 Flatten[Position[t1, 1]] (* A247455 *) %t A247457 Flatten[Position[t2, 1]] (* A247456 *) %t A247457 Flatten[Position[t3, 1]] (* A247457 *) %t A247457 Flatten[Position[t4, 1]] (* A247458 *) %Y A247457 Cf. A247455, A247456, A247458. %K A247457 nonn,easy,base %O A247457 1,1 %A A247457 _Clark Kimberling_, Sep 18 2014