This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247459 #12 Sep 28 2014 08:41:46 %S A247459 1,3,5,7,8,9,10,11,13,15,16,17,19,21,23,25,27,29,30,31,32,33,34,36,38, %T A247459 39,40,42,43,44,46,48,50,51,53,54,56,57,58,59,61,62,64,66,68,70,72,73, %U A247459 74,75,76,78,80,81,82,84,86,87,89,91,93,94,96,97,99,101 %N A247459 Numbers k such that d(r,k) = d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part. %C A247459 Every positive integer lies in exactly one of the sequences A247459 and A247460. %H A247459 Clark Kimberling, <a href="/A247459/b247459.txt">Table of n, a(n) for n = 1..1000</a> %e A247459 {1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,... %e A247459 {3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,... %e A247459 so that a(1) = 1 and a(2) = 3. %t A247459 z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]]; %t A247459 u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]; %t A247459 v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]; %t A247459 t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}]; %t A247459 Flatten[Position[t, 1]] (* A247459 *) %t A247459 Flatten[Position[t, 0]] (* A247460 *) %Y A247459 Cf. A247460, A247455, A247454. %K A247459 nonn,easy,base %O A247459 1,2 %A A247459 _Clark Kimberling_, Sep 18 2014