This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247489 #17 Apr 26 2016 12:45:11 %S A247489 1,0,2,0,1,4,0,1,2,8,0,1,1,3,16,0,1,1,2,5,32,0,1,1,1,3,8,64,0,0,1,1,2, %T A247489 4,13,128,0,0,1,1,1,3,6,21,256,0,0,1,1,1,2,4,9,34,512,0,0,1,1,1,1,3,5, %U A247489 13,55,1024,0,0,1,1,1,1,2,4,7,19,89,2048 %N A247489 Square array read by antidiagonals: A(k, n) = hypergeometric(P, Q, -k^k/(k-1)^(k-1)) rounded to the nearest integer, P = [(j-n)/k, j=0..k-1] and Q = [(j-n)/(k-1), j=0..k-2], k>=1, n>=0. %C A247489 Conjecture: hypergeometric(P, Q, -k^k/(k-1)^(k-1)) = sum_{j=0.. floor(n/k)} binomial(n-(k-1)*j, j) for n>=(k-1)^2, P and Q as above. (This means for n>=(k-1)^2 the representation is exact without rounding.) %e A247489 First few rows of the square array: %e A247489 [k\n] if conjecture true %e A247489 [1], 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... A000079 n>=0 %e A247489 [2], 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... 'A000045' n>=1 %e A247489 [3], 0, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, ... A000930 n>=4 %e A247489 [4], 0, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, ... A003269 n>=9 %e A247489 [5], 0, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 11, 15, ... A003520 n>=16 %e A247489 [6], 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 6, 7, 10, ... A005708 n>=25 %e A247489 [7], 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 7, 8, ... A005709 n>=36 %e A247489 [8], 0, 0, 1, 1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, ... A005710 n>=49 %e A247489 'A000045' means that the Fibonacci numbers as referenced here start 1, 1, 2, 3, ... for n>=0. %p A247489 A247489 := proc(k, n) %p A247489 seq((j-n)/k, j=0..k-1); seq((j-n)/(k-1), j=0..k-2); %p A247489 hypergeom([%%], [%], -k^k/(k-1)^(k-1)); %p A247489 round(evalf(%,100)) end: # Adjust precision if necessary! %p A247489 for k from 1 to 9 do print(seq(A247489(k, n), n=0..16)) od; %o A247489 (Sage) %o A247489 def A247489(k, n): %o A247489 P = [(j-n)/k for j in range(k)] %o A247489 Q = [(j-n)/(k-1) for j in range(k-1)] %o A247489 H = hypergeometric(P, Q, -k^k/(k-1)^(k-1)) %o A247489 return round(H.n(100)) # Adjust precision if necessary! %Y A247489 Cf. A000079, A000045, A000930, A003269, A003520, A005708, A005709, A005710. %K A247489 nonn,tabl %O A247489 0,3 %A A247489 _Peter Luschny_, Sep 19 2014