A247490 Square array read by antidiagonals: A(k, n) = (-1)^(n+1)* hypergeom([k, -n+1], [], 1) for n>0 and A(k,0) = 0 (n>=0, k>=1).
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 3, 2, 0, 1, 3, 7, 11, 9, 0, 1, 4, 13, 32, 53, 44, 0, 1, 5, 21, 71, 181, 309, 265, 0, 1, 6, 31, 134, 465, 1214, 2119, 1854, 0, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 0, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496
Offset: 0
Examples
k\n [1], 0, 1, 0, 1, 2, 9, 44, 265, 1854, ... A000166 [2], 0, 1, 1, 3, 11, 53, 309, 2119, 16687, ... A000255 [3], 0, 1, 2, 7, 32, 181, 1214, 9403, 82508, ... A000153 [4], 0, 1, 3, 13, 71, 465, 3539, 30637, 296967, ... A000261 [5], 0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, ... A001909 [6], 0, 1, 5, 31, 227, 1909, 18089, 190435, 2203319, ... A001910 [7], 0, 1, 6, 43, 356, 3333, 34754, 398959, 4996032, ... A176732 [8], 0, 1, 7, 57, 527, 5441, 61959, 770713, 10391023, ... A176733 The referenced sequences may have a different offset or other small deviations.
Programs
-
Maple
A := (k,n) -> `if`(n<2,n,hypergeom([k,-n+1],[],1)*(-1)^(n+1)); seq(print(seq(round(evalf(A(k,n),100)), n=0..8)), k=1..8);
-
Sage
from mpmath import mp, hyp2f0 mp.dps = 25; mp.pretty = True def A247490(k, n): if n < 2: return n if k == 1 and n == 2: return 0 # (failed to converge) return int((-1)^(n+1)*hyp2f0(k, -n+1, 1)) for k in (1..8): print([k], [A247490(k, n) for n in (0..8)])