A247491 Number of crossing partitions of {1,2,...,n} that contain no singletons.
0, 0, 0, 0, 1, 5, 26, 126, 624, 3193, 17119, 96668, 576104, 3621982, 23980620, 166805068, 1215842905, 9263445775, 73599067250, 608471202527, 5224252803246, 46499854580107, 428369819029085, 4078345518655015, 40073659206668916, 405885206895408576, 4232705116291188276
Offset: 0
Keywords
Examples
The crossing partitions of {1,2,3,4,5} that contain no singletons are: [13|245], [14|235], [24,135], [25|134], [35|124].
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..163
- Peter Luschny, Set partitions
Programs
-
Maple
A247491 := n -> (-1)^n-add((-1)^(n-k)*combinat:-bell(k), k = 0..n-1) - (-1)^n*hypergeom([-n, 1/2], [2], 4); seq(round(evalf(A247491(n), 100)), n=0..27);
-
Mathematica
Table[Sum[(-1)^(n-k)*Binomial[n,k]*(BellB[k]-CatalanNumber[k]), {k,0,n}], {n, 0, 26}] (* Indranil Ghosh, Mar 04 2017 *)
-
PARI
B(n) = sum(k=0, n, stirling(n,k,2)); a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(B(k)-binomial(2*k,k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
-
Sage
A247491 = lambda n: sum((-1)^(n-k)*binomial(n,k)*(bell_number(k) - catalan_number(k)) for k in (0..n)) [A247491(n) for n in range(27)]
Comments