A247494 Number of crossing partitions of {1,2,...,n} that contain singletons.
0, 0, 0, 0, 0, 5, 45, 322, 2086, 13092, 82060, 523116, 3429481, 23279555, 164244262, 1206458632, 9228941572, 73471779239, 608000100209, 5222503739340, 46493341311706, 428345495309624, 4078254436854598, 40073317276815681, 405883920183989049, 4232700263388189325
Offset: 0
Keywords
Examples
The crossing partitions of {1,2,3,4,5} that contain singletons are: [1|24|35], [2|14|35], [3|14|25], [4|13|25], [5|13|24].
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..170
- Peter Luschny, Set partitions
Programs
-
Maple
A247494 := n -> add((-1)^(n-k+1)*combinat:-bell(k+1), k=0..n-1) + (-1)^n*hypergeom([-n,1/2],[2],4) - binomial(2*n,n)/(n+1): seq(round(evalf(A247494(n),100)), n=0..25);
-
Mathematica
Table[Sum[(-1)^(n-k+1)*Binomial[n,k]*(BellB[k]-CatalanNumber[k]),{k,0,n-1}],{n,0,25}] (* Indranil Ghosh, Mar 04 2017 *)
-
PARI
B(n) = sum(k=0, n, stirling(n,k,2)); a(n) = sum(k=0, n-1, (-1)^(n-k+1)*binomial(n,k)*(B(k) - binomial(2*k,k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
-
Sage
A247494 = lambda n: sum((-1)^(n-k+1)*binomial(n,k)*(bell_number(k)-catalan_number(k)) for k in (0..n-1)) [A247494(n) for n in range(26)]
Comments