A247501 Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247498 (the Swiss-Knife polynomials evaluated at nonnegative integers).
1, 1, 1, 0, 3, 2, -2, 4, 12, 6, 0, -3, 38, 60, 24, 16, -14, 60, 330, 360, 120, 0, 63, 2, 1200, 3000, 2520, 720, -272, 274, 252, 3066, 17640, 29400, 20160, 5040, 0, -1383, 3278, 8820, 81144, 246960, 312480, 181440, 40320
Offset: 0
Examples
Triangle starts: [ 1] [ 1, 1] [ 0, 3, 2] [ -2, 4, 12, 6] [ 0, -3, 38, 60, 24] [ 16, -14, 60, 330, 360, 120] [ 0, 63, 2, 1200, 3000, 2520, 720] [-272, 274, 252, 3066, 17640, 29400, 20160, 5040] . [n=3] -> [-2,4,12,6] -> -2/(x-1)+4/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = -2*x*(-5*x+x^2+1)/(x-1)^4; g. f. of A247498[n,3] = 0,-2,2,18, ... [n=4] -> [0,-3,38,60,24] -> 3/(x-1)^2-38/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = (-47*x^2+3*x^3+25*x-5)/(x-1)^5; g. f. of A247498[n,4] = 5,0,-3,32, ...
Programs
-
Maple
Trans := proc(T,n) local L, S, k, j, h, r, c; c := k -> k!*coeff(series(T,t,k+2), t, k); S := [seq([seq(coeff(c(k),x,j), j=0..k)], k=0..n)]; L := proc(m,k) add(S[m+1][j+1]*k^j, j=0..m) end; h := sum(x^j*L(n,j), j=0..infinity); r := convert(h, parfrac); [seq((-1)^(n+1)*coeff(r,(x-1)^(-k-1)), k=0..n)] end: A247501_row := n -> Trans(exp(x*t)*sech(t), n): seq(print(A247501_row(n)), n=0..7);