cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247502 Triangle read by rows: coefficients of polynomials related to the exponential generating function of sequences generated by Narayana polynomials evaluated at the integers; n>=1, 0<=k

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 57, 16, 1, 1, 131, 320, 165, 25, 1, 1, 428, 1711, 1420, 380, 36, 1, 1, 1429, 8967, 11151, 4620, 756, 49, 1, 1, 4861, 46663, 83202, 49665, 12306, 1358, 64, 1, 1, 16795, 242634, 602407, 495327, 172893, 28476, 2262, 81, 1
Offset: 1

Views

Author

Peter Luschny, Nov 18 2014

Keywords

Comments

Definition: Let N(n,x) = Sum_{j=0..n-1} x^j*C(n,j)^2*(n-j)/(n*(j+1)) for n>0 and N(0,x) = 1, further let p(n,x) be implicitly defined by N(n,k) = k!*[x^k](exp(x)*p(n,x)), then T(n,k) = [x^k] p(n,x).

Examples

			Triangle T(n,k) begins:
[n\k][0,    1,     2,     3,     4,     5,    6,  8, 9]
[1]   1,
[2]   1,    1,
[3]   1,    4,     1,
[4]   1,   13,     9,     1,
[5]   1,   41,    57,    16,     1,
[6]   1,  131,   320,   165,    25,     1,
[7]   1,  428,  1711,  1420,   380,    36,    1,
[8]   1, 1429,  8967, 11151,  4620,   756,   49,  1,
[9]   1, 4861, 46663, 83202, 49665, 12306, 1358, 64, 1.
.
The sequence N(7,k) = 1 + 21*k + 105*k^2 + 175*k^3 + 105*k^4 + 21*k^5 + k^6 = 1, 429, 4279, 20071, 65445, ... = A090200(k) has the exponential generating function exp(x)*(1 + 428*x + 1711*x^2 + 1420*x^3 + 380*x^4 + 36*x^5 + x^6). Thus T(7,3) = 1420.
		

Crossrefs

Cf. A243631 and the crossreferences given there.

Formula

T(n, 0) = T(n, n-1) = 1.
T(n, 1) = A001453(n) = A000108(n) - 1 for n>=2.
T(n, n-2) = (n-1)^2 for n>=2.