A247502
Triangle read by rows: coefficients of polynomials related to the exponential generating function of sequences generated by Narayana polynomials evaluated at the integers; n>=1, 0<=k
1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 57, 16, 1, 1, 131, 320, 165, 25, 1, 1, 428, 1711, 1420, 380, 36, 1, 1, 1429, 8967, 11151, 4620, 756, 49, 1, 1, 4861, 46663, 83202, 49665, 12306, 1358, 64, 1, 1, 16795, 242634, 602407, 495327, 172893, 28476, 2262, 81, 1
Offset: 1
Examples
Triangle T(n,k) begins: [n\k][0, 1, 2, 3, 4, 5, 6, 8, 9] [1] 1, [2] 1, 1, [3] 1, 4, 1, [4] 1, 13, 9, 1, [5] 1, 41, 57, 16, 1, [6] 1, 131, 320, 165, 25, 1, [7] 1, 428, 1711, 1420, 380, 36, 1, [8] 1, 1429, 8967, 11151, 4620, 756, 49, 1, [9] 1, 4861, 46663, 83202, 49665, 12306, 1358, 64, 1. . The sequence N(7,k) = 1 + 21*k + 105*k^2 + 175*k^3 + 105*k^4 + 21*k^5 + k^6 = 1, 429, 4279, 20071, 65445, ... = A090200(k) has the exponential generating function exp(x)*(1 + 428*x + 1711*x^2 + 1420*x^3 + 380*x^4 + 36*x^5 + x^6). Thus T(7,3) = 1420.
Crossrefs
Cf. A243631 and the crossreferences given there.
Comments