This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247505 #30 Jan 09 2024 12:33:42 %S A247505 0,0,0,0,1,0,0,1,1,0,0,1,3,1,0,0,1,3,4,1,0,0,1,3,7,7,1,0,0,1,3,7,11, %T A247505 11,1,0,0,1,3,7,15,21,18,1,0,0,1,3,7,15,26,39,29,1,0,0,1,3,7,15,31,51, %U A247505 71,47,1,0,0,1,3,7,15,31,57,99,131,76,1,0 %N A247505 Generalized Lucas numbers: square array A(n,k) read by antidiagonals, A(n,k)=(-1)^(k+1)*k*[x^k](-log((1+sum_{j=1..n}(-1)^(j+1)*x^j)^(-1))), (n>=0, k>=0). %e A247505 n\k[0][1][2][3] [4] [5] [6] [7] [8] [9] [10] [11] [12] %e A247505 [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A247505 [1] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 %e A247505 [2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322 [A000032] %e A247505 [3] 0, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499 [A001644] %e A247505 [4] 0, 1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631 [A073817] %e A247505 [5] 0, 1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333 [A074048] %e A247505 [6] 0, 1, 3, 7, 15, 31, 63, 120, 239, 475, 943, 1871, 3711 [A074584] %e A247505 [7] 0, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903 [A104621] %e A247505 [8] 0, 1, 3, 7, 15, 31, 63, 127, 255, 502, 1003, 2003, 3999 [A105754] %e A247505 [.] . . . . . . . . . . . . . %e A247505 oo] 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095 [A000225] %e A247505 ' %e A247505 As a triangular array, starts: %e A247505 0, %e A247505 0, 0, %e A247505 0, 1, 0, %e A247505 0, 1, 1, 0, %e A247505 0, 1, 3, 1, 0, %e A247505 0, 1, 3, 4, 1, 0, %e A247505 0, 1, 3, 7, 7, 1, 0, %e A247505 0, 1, 3, 7, 11, 11, 1, 0, %e A247505 0, 1, 3, 7, 15, 21, 18, 1, 0, %e A247505 0, 1, 3, 7, 15, 26, 39, 29, 1, 0, %p A247505 A := proc(n, k) f := -log((1+add((-1)^(j+1)*x^j, j=1..n))^(-1)); %p A247505 (-1)^(k+1)*k*coeff(series(f,x,k+2),x,k) end: %p A247505 seq(print(seq(A(n,k), k=0..12)), n=0..8); %t A247505 A[n_, k_] := Module[{f, x}, f = -Log[(1+Sum[(-1)^(j+1) x^j, {j, 1, n}] )^(-1)]; (-1)^(k+1) k SeriesCoefficient[f, {x, 0, k}]]; %t A247505 Table[A[n-k, k], {n, 0, 12}, {k, 0, n}] (* _Jean-François Alcover_, Jun 28 2019, from Maple *) %Y A247505 Cf. A247506, A000225, A000032, A001644, A073817, A074048, A074584, A104621, A105754. %Y A247505 Cf. A125127. %K A247505 tabl,nonn %O A247505 0,13 %A A247505 _Peter Luschny_, Nov 02 2014