cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247516 Card{(x,y,z,t): 1<=x,y,z,t<=n, gcd(x,y,z,t)=1, lcm(x,y,z,t)=n}.

This page as a plain text file.
%I A247516 #34 Sep 03 2023 08:44:25
%S A247516 1,14,14,50,14,196,14,110,50,196,14,700,14,196,196,194,14,700,14,700,
%T A247516 196,196,14,1540,50,196,110,700,14,2744,14,302,196,196,196,2500,14,
%U A247516 196,196,1540,14,2744,14,700,700,196,14,2716,50,700,196,700,14,1540,196
%N A247516 Card{(x,y,z,t): 1<=x,y,z,t<=n, gcd(x,y,z,t)=1, lcm(x,y,z,t)=n}.
%C A247516 For given n and k positive integers, let L(n,k) represent the number of ordered k-tuples of positive integers, whose GCD is 1 and LCM is n. In this notation, the sequence corresponds to a(n) = L(n,4).
%H A247516 Alois P. Heinz, <a href="/A247516/b247516.txt">Table of n, a(n) for n = 1..10000</a>
%H A247516 O. Bagdasar, <a href="https://doi.org/10.5937/SPSUNP1402091B">On Some Functions Involving the lcm and gcd of Integer Tuples</a>, Scientific publications of the state university of Novi Pazar, Ser. A: Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.
%F A247516 For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
%F A247516 a(n) = Product_{i=1..r} ((n_i+1)^4 - 2*n_i^4 + (n_i-1)^4).
%F A247516 a(n) = 2^omega(n)*Product_{i=1..r} (6n_i^2 + 1).
%t A247516 f[p_, e_] := 2*(6*e^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 03 2023 *)
%o A247516 (PARI) a(n) = {f = factor(n); 2^omega(n)*prod(k=1, #f~, 6*f[k, 2]^2+1);} \\ _Michel Marcus_, Sep 18 2014
%Y A247516 Cf. A034444 (produced by L(n,2)), A245019, A070920.
%K A247516 nonn,easy,mult
%O A247516 1,2
%A A247516 _Ovidiu Bagdasar_, Sep 18 2014
%E A247516 More terms from _Michel Marcus_, Sep 18 2014