cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247519 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.

Original entry on oeis.org

3, 9, 10, 23, 31, 44, 49, 56, 57, 58, 59, 70, 75, 80, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 104, 116, 119, 120, 121, 122, 128, 129, 130, 131, 134, 135, 136, 139, 140, 141, 142, 145, 146, 149, 166, 173, 174, 177, 182, 185, 190, 191, 199, 200, 201, 208
Offset: 1

Views

Author

Clark Kimberling, Sep 19 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A247519, A247520, A247521, A247522. Prefixing the binary digits for r by 1 gives the binary digits for s.

Examples

			r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 3.
		

Crossrefs

Programs

  • Mathematica
    z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]] (* A247519 *)
    Flatten[Position[t2, 1]] (* A247520 *)
    Flatten[Position[t3, 1]] (* A247521 *)
    Flatten[Position[t4, 1]] (* A247522 *)