A247519
Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
Original entry on oeis.org
3, 9, 10, 23, 31, 44, 49, 56, 57, 58, 59, 70, 75, 80, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 104, 116, 119, 120, 121, 122, 128, 129, 130, 131, 134, 135, 136, 139, 140, 141, 142, 145, 146, 149, 166, 173, 174, 177, 182, 185, 190, 191, 199, 200, 201, 208
Offset: 1
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 3.
-
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247519 *)
Flatten[Position[t2, 1]] (* A247520 *)
Flatten[Position[t3, 1]] (* A247521 *)
Flatten[Position[t4, 1]] (* A247522 *)
A247521
Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
Original entry on oeis.org
4, 11, 14, 18, 24, 27, 32, 34, 42, 45, 47, 50, 60, 62, 64, 71, 76, 81, 90, 98, 100, 105, 109, 112, 117, 123, 126, 132, 137, 143, 147, 150, 154, 157, 159, 167, 171, 175, 178, 183, 186, 188, 192, 202, 205, 210, 213, 215, 220, 224, 228, 233, 240, 245, 249, 252
Offset: 1
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 4.
-
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247519 *)
Flatten[Position[t2, 1]] (* A247520 *)
Flatten[Position[t3, 1]] (* A247521 *)
Flatten[Position[t4, 1]] (* A247522 *)
A247522
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
Original entry on oeis.org
1, 5, 6, 7, 12, 15, 16, 19, 20, 21, 25, 28, 29, 35, 36, 37, 38, 39, 40, 51, 52, 53, 54, 65, 66, 67, 68, 72, 73, 77, 78, 82, 91, 101, 102, 106, 107, 110, 113, 114, 124, 151, 152, 155, 160, 161, 162, 163, 164, 168, 169, 179, 180, 193, 194, 195, 196, 197, 203
Offset: 1
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 1 and a(2) = 5.
-
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247519 *)
Flatten[Position[t2, 1]] (* A247520 *)
Flatten[Position[t3, 1]] (* A247521 *)
Flatten[Position[t4, 1]] (* A247522 *)
Showing 1-3 of 3 results.
Comments