A247521 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
4, 11, 14, 18, 24, 27, 32, 34, 42, 45, 47, 50, 60, 62, 64, 71, 76, 81, 90, 98, 100, 105, 109, 112, 117, 123, 126, 132, 137, 143, 147, 150, 154, 157, 159, 167, 171, 175, 178, 183, 186, 188, 192, 202, 205, 210, 213, 215, 220, 224, 228, 233, 240, 245, 249, 252
Offset: 1
Examples
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ... so that a(1) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247519 *) Flatten[Position[t2, 1]] (* A247520 *) Flatten[Position[t3, 1]] (* A247521 *) Flatten[Position[t4, 1]] (* A247522 *)
Comments