A247522 Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
1, 5, 6, 7, 12, 15, 16, 19, 20, 21, 25, 28, 29, 35, 36, 37, 38, 39, 40, 51, 52, 53, 54, 65, 66, 67, 68, 72, 73, 77, 78, 82, 91, 101, 102, 106, 107, 110, 113, 114, 124, 151, 152, 155, 160, 161, 162, 163, 164, 168, 169, 179, 180, 193, 194, 195, 196, 197, 203
Offset: 1
Examples
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ... so that a(1) = 1 and a(2) = 5.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247519 *) Flatten[Position[t2, 1]] (* A247520 *) Flatten[Position[t3, 1]] (* A247521 *) Flatten[Position[t4, 1]] (* A247522 *)
Comments