cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247528 Number of length n+3 0..3 arrays with some disjoint pairs in every consecutive four terms having the same sum.

This page as a plain text file.
%I A247528 #8 Nov 07 2018 10:49:14
%S A247528 88,136,220,364,604,1018,1732,2956,5050,8638,14794,25348,43438,74446,
%T A247528 127606,218740,374968,642784,1101898,1888954,3238192,5551168,9516268,
%U A247528 16313584,27966124,47941900,82186078,140890372,241526284,414044950
%N A247528 Number of length n+3 0..3 arrays with some disjoint pairs in every consecutive four terms having the same sum.
%H A247528 R. H. Hardin, <a href="/A247528/b247528.txt">Table of n, a(n) for n = 1..210</a>
%F A247528 Empirical: a(n) = 2*a(n-1) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
%F A247528 Empirical g.f.: 2*x*(44 - 20*x - 26*x^2 + 6*x^3 - 38*x^4 - 9*x^5 + 32*x^6) / ((1 - x)*(1 - x - x^2 - x^4 + x^6)). - _Colin Barker_, Nov 07 2018
%e A247528 Some solutions for n=6:
%e A247528 ..2....0....2....0....0....2....3....3....2....2....0....1....3....3....0....2
%e A247528 ..3....1....0....1....1....3....2....2....1....1....1....1....0....3....1....1
%e A247528 ..1....3....1....1....3....1....2....1....2....1....0....0....0....2....1....0
%e A247528 ..0....2....3....2....2....2....1....2....3....2....1....2....3....2....2....3
%e A247528 ..2....2....2....2....0....0....1....1....2....2....2....1....3....1....0....2
%e A247528 ..1....1....0....1....1....1....2....2....1....1....1....3....0....3....1....1
%e A247528 ..1....1....1....3....1....1....0....1....2....3....2....0....0....2....1....2
%e A247528 ..0....0....1....0....0....2....1....0....3....0....1....2....3....2....2....3
%e A247528 ..2....2....2....2....0....2....3....1....2....2....2....1....3....3....0....0
%Y A247528 Column 3 of A247533.
%K A247528 nonn
%O A247528 1,1
%A A247528 _R. H. Hardin_, Sep 18 2014