This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247529 #6 Jul 23 2025 11:35:30 %S A247529 185,317,561,1007,1823,3455,6495,12105,22459,43255,82157,154279, %T A247529 287847,556213,1059205,1992823,3723991,7202379,13726813,25838725, %U A247529 48308217,93456427,178172281,335410643,627185919,1213463869,2313820457,4355601755 %N A247529 Number of length n+3 0..4 arrays with some disjoint pairs in every consecutive four terms having the same sum. %C A247529 Column 4 of A247533 %H A247529 R. H. Hardin, <a href="/A247529/b247529.txt">Table of n, a(n) for n = 1..210</a> %F A247529 Empirical: a(n) = a(n-1) +4*a(n-2) -4*a(n-3) +18*a(n-4) -18*a(n-5) -78*a(n-6) +78*a(n-7) -67*a(n-8) +67*a(n-9) +386*a(n-10) -386*a(n-11) +22*a(n-12) -22*a(n-13) -686*a(n-14) +686*a(n-15) +125*a(n-16) -125*a(n-17) +616*a(n-18) -616*a(n-19) -178*a(n-20) +178*a(n-21) -340*a(n-22) +340*a(n-23) +130*a(n-24) -130*a(n-25) +80*a(n-26) -80*a(n-27) -40*a(n-28) +40*a(n-29) for n>30 %e A247529 Some solutions for n=6 %e A247529 ..0....3....0....1....4....3....4....3....1....3....0....1....3....2....4....0 %e A247529 ..1....4....4....2....1....2....2....4....0....2....3....0....0....4....1....0 %e A247529 ..3....0....1....0....2....1....1....1....2....4....1....2....4....1....0....2 %e A247529 ..4....1....3....1....3....2....3....0....3....1....2....1....1....3....3....2 %e A247529 ..2....3....2....1....4....3....2....3....1....3....2....1....3....0....2....4 %e A247529 ..1....4....2....2....1....4....2....2....2....0....3....2....2....2....1....0 %e A247529 ..3....2....1....2....2....1....3....1....2....2....1....0....2....1....2....2 %e A247529 ..2....3....1....1....3....0....1....2....3....1....0....3....3....1....3....2 %e A247529 ..4....3....0....3....4....3....4....1....1....1....4....1....1....0....4....0 %K A247529 nonn %O A247529 1,1 %A A247529 _R. H. Hardin_, Sep 18 2014