This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247530 #6 Jul 23 2025 11:35:36 %S A247530 336,600,1124,2164,4228,8440,16932,34068,68688,139040,281646,570720, %T A247530 1157028,2347720,4764538,9669762,19627304,39846710,80899690,164248362, %U A247530 333480544,677107822,1374849942,2791574878,5668275372,11509431434 %N A247530 Number of length n+3 0..5 arrays with some disjoint pairs in every consecutive four terms having the same sum. %C A247530 Column 5 of A247533 %H A247530 R. H. Hardin, <a href="/A247530/b247530.txt">Table of n, a(n) for n = 1..210</a> %F A247530 Empirical: a(n) = 2*a(n-1) +8*a(n-2) -17*a(n-3) +a(n-4) +10*a(n-5) -157*a(n-6) +279*a(n-7) +287*a(n-8) -676*a(n-9) +1052*a(n-10) -1443*a(n-11) -3411*a(n-12) +6586*a(n-13) -1985*a(n-14) +16*a(n-15) +16530*a(n-16) -27897*a(n-17) -7486*a(n-18) +26143*a(n-19) -37856*a(n-20) +52993*a(n-21) +39856*a(n-22) -98023*a(n-23) +38862*a(n-24) -20108*a(n-25) -65879*a(n-26) +144966*a(n-27) -16963*a(n-28) -66316*a(n-29) +54163*a(n-30) -75893*a(n-31) +4252*a(n-32) +70664*a(n-33) -27769*a(n-34) +2220*a(n-35) -2909*a(n-36) -15058*a(n-37) +10538*a(n-38) -826*a(n-39) +1788*a(n-40) +1646*a(n-41) -2884*a(n-42) +1344*a(n-43) -572*a(n-44) -615*a(n-45) +437*a(n-46) +140*a(n-47) +112*a(n-48) -190*a(n-49) -20*a(n-50) +78*a(n-51) +a(n-52) -24*a(n-53) +8*a(n-55) -4*a(n-56) %e A247530 Some solutions for n=6 %e A247530 ..4....3....3....5....1....1....0....1....3....2....3....3....3....4....0....1 %e A247530 ..2....2....2....4....4....4....4....3....2....2....4....4....2....3....2....0 %e A247530 ..3....5....2....1....0....2....1....2....4....3....4....5....0....0....4....2 %e A247530 ..3....4....1....2....5....3....5....0....3....1....5....4....5....1....2....1 %e A247530 ..2....3....1....5....1....3....0....1....3....4....3....3....3....2....0....3 %e A247530 ..4....2....0....4....4....2....4....1....4....2....2....2....2....1....2....4 %e A247530 ..1....1....2....1....2....2....1....0....2....3....4....1....0....2....4....2 %e A247530 ..3....4....3....0....5....3....3....2....5....5....1....4....1....1....2....1 %e A247530 ..0....3....5....5....1....3....2....1....1....0....5....3....3....0....0....5 %K A247530 nonn %O A247530 1,1 %A A247530 _R. H. Hardin_, Sep 18 2014