A247534 Number of length 2+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.
8, 45, 136, 317, 600, 1033, 1616, 2409, 3400, 4661, 6168, 8005, 10136, 12657, 15520, 18833, 22536, 26749, 31400, 36621, 42328, 48665, 55536, 63097, 71240, 80133, 89656, 99989, 111000, 122881, 135488, 149025, 163336, 178637, 194760, 211933, 229976
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....0....4....5....6....4....3....3....0....4....3....0....6....5....3....0 ..3....4....4....4....1....2....0....2....5....4....5....1....3....4....1....2 ..3....6....3....2....4....3....3....4....1....5....5....3....2....6....4....0 ..4....2....3....3....3....3....0....3....6....5....3....4....5....5....6....2 ..4....4....4....3....6....4....3....1....2....6....3....6....0....5....3....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A247533.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Also as a cubic plus a linear quasipolynomial with period 2:
Empirical for n mod 2 = 0: a(n) = (9/2)*n^3 + (3/2)*n^2 + 1*n + 1
Empirical for n mod 2 = 1: a(n) = (9/2)*n^3 + (3/2)*n^2 - (1/2)*n + (5/2).
Empirical g.f.: x*(8 + 29*x + 38*x^2 + 32*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 07 2018