A247535 Number of length 3+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.
8, 61, 220, 561, 1124, 2009, 3220, 4901, 7016, 9737, 13000, 17025, 21688, 27245, 33572, 40929, 49140, 58553, 68924, 80613, 93400, 107641, 123056, 140113, 158440, 178509, 200012, 223393, 248260, 275209, 303748, 334453, 366920, 401689, 438264
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....1....1....3....5....1....1....3....5....3....3....5....6....2....3....4 ..2....5....4....4....5....0....3....0....4....1....2....6....4....5....2....2 ..0....3....5....2....6....5....5....3....2....3....0....4....3....1....1....3 ..4....3....2....3....4....6....3....6....3....5....1....5....1....4....2....3 ..2....5....3....1....5....1....5....3....3....3....3....3....2....2....1....2 ..6....5....6....2....5....0....3....6....2....5....4....4....0....5....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A247533.
Formula
Empirical: a(n) = a(n-2) + 2*a(n-3) + a(n-4) - 2*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) + 2*a(n-9) + a(n-10) - a(n-12).
Also as a cubic plus a linear quasipolynomial with period 12:
Empirical for n mod 12 = 0: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n + 1
Empirical for n mod 12 = 1: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (385/54)
Empirical for n mod 12 = 2: a(n) = (563/54)*n^3 - (127/18)*n^2 + (10/9)*n + (97/27)
Empirical for n mod 12 = 3: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (19/2)
Empirical for n mod 12 = 4: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - (37/27)
Empirical for n mod 12 = 5: a(n) = (563/54)*n^3 - (127/18)*n^2 - (61/18)*n + (761/54)
Empirical for n mod 12 = 6: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - 1
Empirical for n mod 12 = 7: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (385/54)
Empirical for n mod 12 = 8: a(n) = (563/54)*n^3 - (127/18)*n^2 + (10/9)*n + (151/27)
Empirical for n mod 12 = 9: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (19/2)
Empirical for n mod 12 = 10: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - (91/27)
Empirical for n mod 12 = 11: a(n) = (563/54)*n^3 - (127/18)*n^2 - (61/18)*n + (761/54).
Empirical g.f.: x*(8 + 61*x + 212*x^2 + 484*x^3 + 774*x^4 + 963*x^5 + 892*x^6 + 661*x^7 + 330*x^8 + 120*x^9 - x^11) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, Nov 07 2018